30. November 2012

13. Übungsblatt Analysis II

Fragen: (je ein Punkt)

Die Antworten auf die nachfolgenden Fragen sollten nicht länger als etwa zwei Zeilen sein und lediglich eine kurze Begründung enthalten. Antworten ohne Begründung werden nicht gewertet.

- 1) Richtig oder falsch: Falls die stetige Funktion $f:[a,b] \to \mathbb{R}$ im abgeschlossenen Intervall [a, b] keine negativen Werte annimmt, ist $\int_a^b f(x) dx \ge 0$.
- 2) Bestimmen Sie alle Funktion F(x) mit $F'(x) = \frac{1}{x^2}!$
- 3) Richtig oder falsch: Für jede dieser Funktionen F ist $\int_{-1}^{2} \frac{dx}{x^2} = F(2) F(-1)$.

Aufgabe 5: (5 Punkte)

- a) Bestimmen Sie alle komplexen Nullstellen der Sinus- und der Kosinusfunktion!
- b) Bestimmen Sie die größte Teilmenge $D_1 \subseteq \mathbb{C}$, auf der $\tan z = \frac{\sin z}{\cos z}$ erklärt werden kann, und die größte Teilmenge $D_2 \subseteq \mathbb{C}$, auf der $\cot z = \frac{\cos z}{\sin z}$ erklärt werden kann!
- c) Bestimmen Sie die Ableitungen von $\tan x$ auf $D_1 \cap \mathbb{R}$ und $\cot x$ auf $D_2 \cap \mathbb{R}!$

Aufgabe 6: (5 Punkte)

- a) Drücken Sie $\cos^4 x$ aus als Linearkombination von Termen der Form $\cos \alpha x$!
- b) Zeigen Sie: Für jeden Winkel φ genügt $z=\cos\frac{\varphi}{2}$ der quadratischen Gleichung

$$z^2 = \frac{1 + \cos \varphi}{2} !$$

c) Berechnen Sie sin $\frac{\pi}{12}$ und cos $\frac{\pi}{12}$!

Aufgabe 7: (2 Punkte)

Eine Schablone zum Zeichnen der Parabel $y = x^2$ habe eine Länge (= maximaler y-Wert) von 12cm. Welche Fläche hat sie?

Aufgabe 8: (6 Punkte)

- a) Berechnen Sie anhand einer Approximation durch vier Rechtecke eine obere und eine untere Schranke für die Fläche unter der Kurve $y = 1/\sqrt{9-x^3}$ zwischen x = 0 und x = 2!(Taschenrechnergenauigkeit)
- b) Beweisen Sie die Keplersche Faßregel: Für $f(x) = \alpha x^3 + \beta x^2 + \gamma x + \delta$ ist die Fläche zwischen der Kurve y=f(x) und der x-Achse zwischen den Koordinatenwerten $x=\alpha$ und x = b gleich $\frac{b-a}{6}(y_0 + 4y_1 + y_2)$ mit $y_0 = f(a)$, $y_1 = f(\frac{a+b}{2})$ und $y_2 = f(b)$.
- c) Gelegentlich wird diese Regel auch für beliebige Funktionen zur näherungsweisen Berechnung des Integrals eingesetzt. Schätzen Sie nach dieser Formel die in a) betrachtete Fläche!