Themenvorschläge für die kleinen Übungen am 13.+14. Mai 2013

- a) f, g: [a, b] $\to \mathbb{R}$ seien zwei stetige Funktionen und f(x) \le g(x) für alle x \in [a, b]. Zeigen Sie, daß die Menge A = {(x, y) $\in \mathbb{R}^2 \mid a \le x \le b \text{ und } f(x) \le y \le g(x)$ } wegzusammenhängend ist!
- b) Gilt dies auch, wenn man auf die Stetigkeitsannahme verzichtet?
- c) Gilt dies auch, wenn man auf die Annahme $f(x) \leq g(x)$ verzichtet?
- d) Welche Fläche hat die Menge A?
- e) Bestimmen Sie jeweils die Menge aller innerer, äußerer und Randpunkte von A!
- f) Zeigen Sie, daß das für zwei positive reelle Zahlen a,b gilt: Das äußere Maß der Menge $E = \left\{ (x,y) \in \mathbb{R}^2 \mid \frac{x^2}{a^2} + \frac{y^2}{b^2} \le 1 \right\}$ ist höchstens gleich 4ab!
- g) Richtig oder falsch: Sind $\|\cdot\|_1$ und $\|\cdot\|_2$ Normen auf \mathbb{R}^n , so ist auch ihre Summe eine Norm.
- h) Die Jacobi-Matrix der Funktion $f: \mathbb{R}^2 \to \mathbb{R}$ im Punkt $(x,y) \in \mathbb{R}^2$ sei

$$J_f(x,y) = \begin{pmatrix} \cos(x+2y) & 2\cos(x+2y) \\ -6x\sin(3x^2) & 0 \end{pmatrix} \,.$$

Was können Sie über f sagen?

- i) $f: \mathbb{R} \to \mathbb{R}$ sei eine differenzierbare Funktion. Was ist $\int 3\cos(x) \cdot f'(\sin x) dx$?
- j) Berechnen Sie die Integrale

$$I_1 = \int \frac{x^2 + 2x + 3}{x^3 + 3x^2 + 9x + 19} \, dx, \quad I_2 = \int \tan x \, dx \quad \text{und} \quad I_3 = \int x^3 \sin(x^2) \, dx \, !$$

- k) Q sei das Quadrat mit Ecken (0,0),(1,0),(1,1) und (0,1). Berechnen Sie $\int_Q xye^{-x^2-y^2}$!
- l) Zeigen Sie, daß $\int_Q \sin(xy) \cdot e^{-x^2 y^2}$ nicht größer als der gerade berechnete Wert sein kann! m) Q sei das Quadrat mit Ecken $(0,0), (\frac{\pi}{4},0), (\frac{\pi}{4},\frac{\pi}{4})$ und $(0,\frac{\pi}{4})$. Zeigen Sie die Ungleichung

$$\int_{Q} \cos(x + y) \cdot e^{-x^2 - y^2} \le \sqrt{2} - 1!$$