Themenvorschläge für die kleinen Übungen am 8.+9. April 2013

a) Welche der folgenden Mengen sind konvex, welche wegzusammenhängend und welche zusammenhängend?

$$\begin{array}{lll} A = \left\{ (x,y) \in \mathbb{R}^2 \;\middle|\; x^2 + 4y^2 < 5 \right\}, & B = \left\{ (x,y) \in \mathbb{R}^2 \;\middle|\; x^2 + 4y^2 \leq 5 \right\}\\ C = \left\{ (x,y) \in \mathbb{R}^2 \;\middle|\; x^2 + 4y^2 = 5 \right\}, & D = \left\{ (x,y) \in \mathbb{R}^2 \;\middle|\; x^2 + 4y^2 \neq 5 \right\}\\ E = \left\{ (x,y) \in \mathbb{R}^2 \;\middle|\; x^2 + 4y^2 \geq 5 \right\}, & F = \left\{ (x,y) \in \mathbb{R}^2 \;\middle|\; x^2 + 4y^2 > 5 \right\}\\ G = \left\{ (x,y) \in \mathbb{R}^2 \;\middle|\; x^2 - 4y^2 < 5 \right\}, & H = \left\{ (x,y) \in \mathbb{R}^2 \;\middle|\; x^2 - 4y^2 \leq 5 \right\}\\ I = \left\{ (x,y) \in \mathbb{R}^2 \;\middle|\; x^2 - 4y^2 \geq 5 \right\}, & J = \left\{ (x,y) \in \mathbb{R}^2 \;\middle|\; x^2 - 4y^2 \neq 5 \right\}\\ K = \left\{ (x,y) \in \mathbb{R}^2 \;\middle|\; x^2 - 4y^2 \geq 5 \right\}, & L = \left\{ (x,y) \in \mathbb{R}^2 \;\middle|\; x^2 - 4y^2 > 5 \right\} \end{array}$$

- b) Ist $X = \{(x,y) \in \mathbb{R}^2 \mid xy = 1 \text{ oder } xy = 0\}$ wegzusammenhängend oder zusammenhängend?
- c) Zeigen Sie: Eine Teilmenge $X \subseteq \mathbb{R}$ ist genau dann ein abgeschlossenes Intervall [a, b] mit $a, b \in \mathbb{R}$, wenn sie kompakt und zusammenhängend ist.
- d) Die Lemniskate zum Parameter $a \in \mathbb{R}$ ist die Menge

$$\mathcal{L}_\alpha = \left\{ \left(\frac{\alpha \cos t}{1 + \sin^2 t}, \; \frac{\alpha \sin t \cos t}{1 + \sin^2 t} \right) \; \middle| \; t \in \mathbb{R} \right\} \subset \mathbb{R}^2 \, .$$

Zeigen Sie, daß \mathcal{L}_{α} für jedes $\alpha \in \mathbb{R}$ zusammenhängend und kompakt ist!

- e) Zeigen Sie, daß \mathcal{L}_3 nichtleeren Durchschnitt mit der Hyperbel $\mathcal{H} = \{(x,y) \in \mathbb{R}^2 \mid xy = 1\}$ hat! *Hinweis*: Betrachten Sie den Wertebereich der Funktion f(x,y) = xy auf \mathcal{L}_3 !
- f) Zeigen Sie, daß das nichtlineare Gleichungssystem

$$x^4 + y^4 = 2$$
 und $x^3 + 2xy^2 + 3xy^3 + 5y^5 = 4$

mindestens eine reelle Lösung hat!

- g) Zeigen Sie: Es gibt $(x,y) \in \mathbb{R}^2$ mit $x^2 + y^2 < \frac{\pi}{2}$ und $\tan(x^2 + y^2) = e^{xy}\cos(\pi x^2)$!
- h) Richtig oder falsch: Ist $(x_n)_{n\in\mathbb{N}}$ eine Cauchy-Folge reeller Zahlen, so ist die Folge der Paare (x_n, x_{n+1}) eine Cauchy-Folge in \mathbb{R}^2 .
- i) $f: \mathbb{R} \to \mathbb{R}$ sei eine stetige Funktion, x_1 eine reelle Zahl, und durch $x_n = f(x_{n-1})$ für $n \ge 2$ sei rekursiv eine Folge $(x_n)_{n \in \mathbb{N}}$ definiert. Zeigen Sie: Konvergiert diese Folge gegen ein $x \in \mathbb{R}$, so ist x ein Fixpunkt von f!
- *j)* Zeigen Sie: Für jedes $a \in \mathbb{R}$ konvergiert die Folge $(x_n)_{n \in \mathbb{N}}$ mit $x_1 = a$ und $x_n = \sin x_{n-1}$ für $n \ge 2$ gegen Null!
- k) Finden Sie alle Fixpunkte der Funktion $f(x) = x^2 + c$ und entscheiden Sie, für welche $c \in \mathbb{R}$ diese stabil sind!
- l) Finden Sie alle Fixpunkte von fof und entscheiden Sie, für welche $c \in \mathbb{R}$ diese stabil sind!
- m) Zur stetigen Funktion $f: \mathbb{R} \to \mathbb{R}$ gebe es im Intervall [a, b] einen Punkt c mit f(c) < a und einen Punkt d mit f(d) > b. Zeigen Sie, daß es mindestens ein $x \in [a, b]$ gibt mit f(x) = x.