16. Mai 2013

11. Übungsblatt Analysis II

Fragen: (je ein Punkt)

Die Antworten auf die nachfolgenden Fragen sollten nicht länger als etwa zwei Zeilen sein und lediglich eine kurze Begründung enthalten. Antworten ohne Begründung werden nicht gewertet.

- 1) Richtig oder falsch: $\vec{a} \in \mathbb{R}^3$ sei nicht der Nullvektor. Dann gilt für je zwei Vektoren $\vec{x}, \vec{y} \in \mathbb{R}^3$: Wenn $\vec{a} \times \vec{x} = \vec{a} \times \vec{y}$ ist, muß auch $\vec{x} = \vec{y}$ sein.
- 2) Richtig oder falsch: B sei der Kreis um den Nullpunkt mit Radius zehn, und $f: \mathbb{R}^2 \to \mathbb{R}$ sei eine stetige Funktion. Dann ist $\int_B f(x,y) = \int_B f(y,x)$.
- 3) Die Funktion f(x,y) hänge, in Polarkoordinaten geschrieben, nur vom Radius r ab. Was können Sie über die Niveaulinien von f sagen?
- 4) Die Funktion $g: \mathbb{R}^2 \to \mathbb{R}$ bilde den Punkt mit Polarkoordinaten (r, ϕ) ab auf $r^2 \sin 2\phi$. Was ist g(x, y)?
- 5) Geben Sie die Funktion $f: \mathbb{R}^2 \to \mathbb{R}$ mit $f(x,y) = (x+y)^2$ auf möglichst einfache Weise in Polarkoordinaten an!

Aufgabe 1: (6 Punkte)

Das Spatprodukt dreier Vektoren $\vec{u}, \vec{v}, \vec{w} \in \mathbb{R}^3$ ist die Zahl $\langle \vec{u}, \vec{v} \times \vec{w} \rangle$. Zeigen Sie, daß es gleich der Determinante mit Spaltenvektoren \vec{u}, \vec{v} und \vec{w} ist!

- b) Folgern Sie, daß $\langle \vec{u}, \vec{v} \times \vec{w} \rangle = \langle \vec{v}, \vec{w} \times \vec{u} \rangle = \langle \vec{w}, \vec{u} \times \vec{v} \rangle$ ist!
- c) Was können Sie über $\langle \vec{u}, \vec{w} \times \vec{v} \rangle$, $\langle \vec{v}, \vec{u} \times \vec{w} \rangle$ und $\langle \vec{w}, \vec{v} \times \vec{u} \rangle$ sagen?

Aufgabe 2: (4 Punkte)

- a) Zeigen Sie, daß die Länge des Kreuzprodukts der beiden Diagonalvektoren eines Parallelogramms gleich der doppelten Fläche des Parallelogramms ist!
- b) Zeigen Sie, daß das Viereck mit Ecken (1,1), (3,7), (7,8) und (5,2) ein Parallelogramm ist, und berechnen Sie seine Fläche!

Aufgabe 3: (5 Punkte)

 K_R sei die Kreisscheibe mit Radius R um den Nullpunkt. Berechnen Sie $\int_{K_R} \cos(x^2 + y^2)$ in Abhängigkeit von R!