28. Februar 2013

3. Übungsblatt Analysis II

Fragen: (je ein Punkt)

Die Antworten auf die nachfolgenden Fragen sollten nicht länger als etwa zwei Zeilen sein und lediglich eine kurze Begründung enthalten. Antworten ohne Begründung werden nicht gewertet.

- 1) Richtig oder falsch: Die stetig differenzierbare Funktion $f: \mathbb{R}^2 \to \mathbb{R}$ habe in keinem Punkt $(x,y) \in \mathbb{R}^2$ ein Maximum. Dann ist f unbeschränkt.
- 2) Richtig oder falsch: $f:W\to\mathbb{R}$ sei differenzierbar auf dem Würfel $W=[-1,\,1]^n$, Falls f in einem Punkt $x \in W$ sein Maximum annimmt, ist dort grad f = 0.
- 3) Konstruieren Sie eine mindestens zweifach differenzierbare Funktion $f:\mathbb{R}^2 \to \mathbb{R}$, für die keine der beiden partiellen Ableitungen überall verschwindet, aber $\nabla f(0,0) = \vec{0}$ ist, ohne daß der Nullpunkt Maximum, Minimum oder Sattelpunkt wäre!
- 4) Richtig oder falsch: Im Punkt (x_0, y_0) verschwinde der Gradient der differenzierbaren Funktion $f: \mathbb{R}^2 \to \mathbb{R}$. Außerdem habe $f(x_0, y)$ ein lokales Minimum im Punkt $y = y_0$ und $f(x, y_0)$ ein lokales Miniumum im Punkt $x = x_0$. Dann hat f(x, y) ein lokales Minimum in $(x_0, y_0).$
- 5) Richtig oder falsch: Hat $f: \mathbb{R}^2 \to \mathbb{R}$ im Punkt (x_0, y_0) ein lokales Maximum und ist $g(x_0, y_0) = 0$, so hat f in (x_0, y_0) auch ein lokales Maximum unter der Nebenbedingung g(x, y) = 0.

- Aufgabe 6: (7 Punkte)
 a) Ist die Funktion $f: \mathbb{R}^2 \to \mathbb{R}$ mit $f(x,y) = \begin{cases} \frac{x^4}{x^2 + y^2} & \text{falls } (x,y) \neq (0,0) \\ 0 & \text{falls } (x,y) = (0,0) \end{cases}$ im Punkt (0,0)
- b) Ist sie dort stetig differenzierbar?
- c) Bestimmen Sie alle $(x,y) \in \mathbb{R}^2$, für die der Gradient von $f(x,y) = x^4 + yx^2 x^2 y$ verschwindet!

Aufgabe 7: (6 Punkte)

- a) Ein Produkt werde aus drei Resourcen hergestellt, die jeweils 10 Euro, 5 Euro bzw. 20 Euro pro Einheit kosten. Aus x Einheiten der ersten, y Einheiten der zweiten und z Einheiten der dritten lassen sich $100\sqrt{x}\sqrt[4]{y}\sqrt[4]{z}$ Einheiten des Produkts fertigen. Wie viele Einheiten können für 120 000 Euro maximal gefertigt werden?
- b) Ab welchem Stückpreis für das fertige Produkt lohnt es sich, den Einsatz von 120000 Euro zu erhöhen?

Aufgabe 8: (2 Punkte)

 $p(x) = x^n + a_{n-1}x^{n-1} + \cdots + a_1x + a_0$ sei ein Polynom n-ten Grades, und x_0 sei eine Nullstelle von f. Zeigen Sie: Falls x₀ keine mehrfache Nullstelle ist, gibt es ein offenes Intervall (-c, c) und eine Funktion $\varphi: (-c, c) \to \mathbb{R}$, so daß $\varphi(0) = x_0$ ist und $p(\varphi(y)) = y$ für alle $y \in (-c, c)$.

Abgabe bis zum Mittwoch, dem 6. März 2013, um 10.10 Uhr