21. Dezember 2012

Modulklausur Analysis I

• • • Schreiben Sie bitte auf jedes Blatt Ihren Namen!
• • • Die Aufgaben müssen nicht in der angegebenen Reihenfolge
• • bearbeitet werden; konzentrieren sie sich zunächst
• • • auf das, womit sie schnell Punkte holen können!

Fragen: (je zwei Punkte)

Die Antworten auf die nachfolgenden Fragen sollten nicht länger als etwa zwei Zeilen sein und lediglich eine kurze Begründung enthalten. Antworten ohne Begründung werden nicht gewertet.

- 1) Richtig oder falsch: Jede monoton fallende Folge positiver Zahlen konvergiert.
- 2) Richtig oder falsch: Jede strikt monoton wachsende Funktion $f: \mathbb{R} \to \mathbb{R}$ ist injektiv.
- 3) Richtig oder falsch: Jede strikt monoton fallende Funktion $f: \mathbb{R} \to \mathbb{R}$ ist surjektiv.
- 4) Richtig oder falsch: Die Reihe $\sum_{k=1}^{\infty} \frac{1}{k^3 + 1}$ konvergiert.
- 5) Für die differenzierbare Funktion $f: \mathbb{R} \to \mathbb{R}$ sei f'(x) = f(x) für alle $x \in \mathbb{R}$ und f(0) = 2. Was ist f(x)?
- 6) Was ist $\int_{0}^{\pi} (x^3 + 2\cos 2x) \, dx$?

Aufgabe 1: (7 Punkte)

Stellen Sie die Zahlen

a)
$$\frac{3+\sqrt{5}}{3-\sqrt{5}}$$
 b) $(i-\sqrt{3})^3$ und c) $\left(\frac{i-\sqrt{3}}{2}\right)^{2013}$ möglichst einfach dar!

d) Finden Sie alle komplexen Lösungen der quadratischen Gleichung $z^2 + 6iz - 13 = 0$!

Aufgabe 2: (5 Punkte)

Zeigen Sie, daß
$$\sum_{k=1}^n k(k+1) = 2+6+\cdots + n(n+1) = \frac{n(n+1)(n+2)}{3} \text{ für alle } n \in \mathbb{N} \,!$$

Aufgabe 3: (14 Punkte)

a) In welchen Punkten $x \in \mathbb{R}$ ist die Funktion $f: \mathbb{R} \setminus \{1\} \to \mathbb{R}$ mit

$$f(x) = \begin{cases} x^3 & \text{für } x \le 0\\ \sin \pi x & \text{für } 0 < x < 1\\ \frac{e^x - e}{x - 1} & \text{für } x > 1 \end{cases}$$

stetig, in welchen differenzierbar?

- b) Läßt sich f fortsetzen zu einer im Punkt x=1 stetigen Funktion $\mathbb{R} \to \mathbb{R}$?
- c) Läßt sich f fortsetzen zu einer im Punkt x=1 differenzierbaren Funktion $\mathbb{R} \to \mathbb{R}$?
- d) Was sind

$$\int_{-1}^{0} f(x) dx, \qquad \int_{0}^{1} f(x) dx \quad \text{und} \quad \int_{-1}^{1} f(x) dx ?$$

e) Richtig oder falsch: Sind g, h: $\mathbb{R} \to \mathbb{R}$ differenzierbare Funktionen und stimmen für ein $a \in \mathbb{R}$ die Ableitungen g'(a) und h'(a) überein, so ist auch die Funktion

$$p: \left\{ \begin{array}{l} \mathbb{R} \to \mathbb{R} \\ x \mapsto \left\{ \begin{array}{ll} g(x) & \text{für } x \leq \alpha \\ h(x) & \text{für } x > \alpha \end{array} \right. \end{array} \right.$$

differenzierbar.

Aufgabe 4: (10 Punkte)

- a) Wo hat die Funktion $f: \mathbb{R} \to \mathbb{R}$ mit $f(x) = x^3 12x + 4$ ihre lokalen Maxima, wo die Minima? Welche Funktionswerte werden dort angenommen?
- b) Zeigen Sie, daß f im Intervall [-4, 4] genau drei relle Nullstellen hat!
- c) Wo ist die Funktion konvex, wo konkav?
- e) Richtig oder falsch: Die Funktion $g: \mathbb{R} \to \mathbb{R}$ sei stetig und für zwei Zahlen $a < b \in \mathbb{R}$ sei g(a) = g(b) = 0. Dann gibt es im Intervall (a, b) mindestens ein lokales Maximum oder Minimum.
- f) Richtig oder falsch: Die stetige Funktion h: $[a, b] \rightarrow [c, d]$ sei surjektiv. Dann ist h monoton wachsend oder monoton fallend.

Aufgabe 5: (6 Punkte)

Bestimmen Sie das Taylor-Polynom dritten Grades der Funktion $f(x) = e^x \sin 2x$ um den Nullpunkt!

Aufgabe 6: (6 Punkte)

- a) Drücken Sie $\cos^2 x \sin^2 x$ aus als Linearkombination von Funktionen der Form $\cos \alpha x$ mit $\alpha \in \mathbb{R}$!
- b) Finden Sie alle Funktionen $f: \mathbb{R} \to \mathbb{R}$ mit $f'(x) = \cos^2 x \sin^2 x!$