15. April 2010

7. Übungsblatt Analysis II

Fragen: (je ein Punkt)

Die Antworten auf die nachfolgenden Fragen sollten nicht länger als etwa zwei Zeilen sein und lediglich eine kurze Begründung enthalten. Antworten ohne Begründung werden nicht gewertet.

- 1) Richtig oder falsch: Der Durchschnitt zweier kompakter Teilmengen von \mathbb{R}^n ist kompakt.
- 2) Richtig oder falsch: Der Durchschnitt zweier wegzusammenhängender Teilmengen von \mathbb{R}^n ist wegzusammenhängend.
- 3) Richtig oder falsch: f sei auf $D = \{x \in \mathbb{R}^n \mid ||x|| < 2\}$ differenzierbar, und ∇f sei dort nirgends gleich dem Nullvektor. Dann nimmt f sowohl sein Maximum als auch sein Minimum in $M = \{x \in \mathbb{R}^n \mid ||x|| \le 1\}$ auf der Einheitssphäre $\{x \in \mathbb{R}^n \mid ||x|| = 1\}$ an.
- 4) Richtig oder falsch: Ist $f: \mathbb{R}^2 \to \mathbb{R}$ stetig und $X \subset \mathbb{R}$ kompakt, so ist auch das Urbild $f^{-1}(X)$ kompakt.
- 5) Richtig oder falsch: Ist $X \subset \mathbb{R}^2$ kompakt und zusammenhängend, so ist auch $\mathbb{R}^2 \setminus X$ zusammenhängend.

Aufgabe 1: (9 Punkte)

a) Welche der folgenden Mengen ist kompakt?

$$\begin{array}{ll} A = \{(x,y) \in \mathbb{R}^2 \mid |x| + |y| < 2\}, & B = \{(x,y) \in \mathbb{R}^2 \mid |x| \mid y \mid \leq 1\}, \\ C = \{(x,y,z) \in \mathbb{R}^3 \mid -1 \leq z \leq 1\}, & D = \{(x,y,z) \in \mathbb{R}^3 \mid x^4 + y^4 + z^4 \leq 100\} \end{array}$$

b) Zeigen Sie: Für jede Norm $\|\cdot\|$ auf \mathbb{R}^n ist $\{x \in \mathbb{R}^n \mid \|x\| \le 1\}$ kompakt!

Aufgabe 2: (6 Punkte)

Bestimmen Sie das absolute Maximum und Minimum von $f(x,y)=3x^4+y^4$ unter der Nebenbedingung $x^2+3y^2\leq 7!$

Aufgabe 3: (ohne Abgabe)

Eine Teilmenge $S \subseteq \mathbb{R}^n$ heißt sternförmig, wenn es einen Punkt $x \in S$ gibt, so daß für jeden weiteren Punkt $y \in S$ die Verbindungsstrecke von x und y ganz in S liegt.

- a) Ist eine sternförmige Menge notwendigerweise konvex? wegzusammenhängend? zusammenhängend? kompakt?
- b) Ist eine konvexe/wegzusammenhängende/zusammenhängende/kompakte Menge notwendigerweise sternförmig?
- c) Zeigen Sie: $\{(x, y, z) \in \mathbb{R}^3 \mid xyz = 0\}$ ist sternförmig!