Themenvorschläge für die kleinen Übungen am 23-25. November 2009

- a) Zeigen Sie, daß die Funktion $f(x) = x^5 + x + 1$ auf ganz \mathbb{R} streng monoton wachsend ist!
- b) Welche Ableitung hat die Umkehrfunktion g von f im Punkt f(2) = 35?
- c) Wo hat g lokale Maxima und Minima?
- d) Wo ist f konvex, wo konkav?
- e) Ist die Logarithmusfunktion konvex oder konkav auf $(0, \infty)$?
- f) Wie sieht es aus mit der Exponentialfunktion?

g) Was ist
$$\lim_{x\to 1} \frac{x^4 - x^3 + x^2 - 1}{x^5 - x^4 + x^3 - x^2 + x - 1}$$
?
h) Zeigen Sie: Für alle $n \in \mathbb{N}$ ist $\lim_{x\to \infty} x^n e^{-x} = 0$!

- i) Zeigen Sie: Zu jedem $n \in \mathbb{N}$ gibt es ein $M_n \in \mathbb{R}$, so daß $e^x > x^n$ für alle $x > M_n$.
- *j*) Was ist $\lim_{x \searrow 0} \sqrt{x} \log x$?
- k) Zeigen Sie: Die n-te Ableitung von x^n ist n!.
- 1) Berechnen Sie die TAYLOR-Reihe der Funktion $f(x) = x^3$ um x = 1!
- m)Bestimmen Sie die TAYLOR-Reihe von $f(x) = e^{-x^2}$ um den Nullpunkt!
- n) Bestimmen Sie das TAYLOR-Polynom fünften Grades von $f(x) = \sqrt{x}$ um x = 1!