Übungsaufgaben zur Linearen Algebra I Aufgabenblatt 7

Aufgabe 1: Homomorphismen und Restklassengruppen (2+1+1 Punkte)

a.) Zeigen Sie, daß es zwischen den folgenden Restklassengruppen genau dann einen Gruppenhomomorphismus der Form

$$\varphi_{n,m} \colon \mathbb{Z}_n \longrightarrow \mathbb{Z}_m \quad \text{mit} \quad [a]_n \mapsto [a]_m$$

gibt, wenn m ein Teiler von n ist. Bestimmen Sie in diesem Fall den $\ker(\varphi_{n,m})$.

- b.) Bestimmen Sie einen injektiven Gruppenhomomorphismus von der Restklassengruppe \mathbb{Z}_{12} in die Restklassengruppe \mathbb{Z}_{24} und geben Sie dessen Bild an.
- c.) Bestimmen Sie einen surjektiven Gruppenhomomorphismus von der Restklassengruppe \mathbb{Z}_{36} auf die Restklassengruppe \mathbb{Z}_9 und geben Sie alle seine Fasern an.

Aufgabe 2: Restklassenringe (1+1+1+1 Punkte)

- a.) Stellen Sie für die Restklassenringe \mathbb{Z}_4 und \mathbb{Z}_5 die multiplikativen Verknüpfungstafeln auf.
- b.) Zeigen Sie für ein Element a des Restklassenrings \mathbb{Z}_n die folgende Äquivalenz: a ist eine Einheit im Ring $\mathbb{Z}_n \iff \langle a \rangle = \mathbb{Z}_n$.
- c.) Bestimmen Sie die Elemente der Einheitengruppe \mathbb{Z}_n^* des Ringes \mathbb{Z}_n für n=15 und n=16.
- d.) Zeigen Sie, daß im Restklassenring \mathbb{Z}_n jedes Element ungleich Null entweder ein Nullteiler oder eine Einheit ist.

Aufgabe 3: Linksmultiplikation in Ringen (1+2+1 Punkte)

a.) Sei $(R, +, \cdot)$ ein Ring und $a \in R$ mit $a \neq 0$. Zeigen Sie, daß dann für die Linksmultiplikation λ_a gilt:

a ist kein Nullteiler $\implies \lambda_a$ injektiv.

b.) Sei $(R, +, \cdot)$ nun ein kommutativer Ring mit Eins und $a \in R$. Zeigen Sie für die Linksmultiplikation λ_a die Äquivalenz:

a ist eine Einheit \iff λ_a bijektiv.

c.) Bestimmen Sie den Kern der Linksmultiplikation $\lambda_a \colon \mathbb{Z}_{24} \longrightarrow \mathbb{Z}_{24}$ mit $a \in \{ [8]_{24}, [18_{24}] \}$, d.h.

 $\lambda_a \colon \mathbb{Z}_{24} \longrightarrow \mathbb{Z}_{24} \quad \text{mit} \quad [b]_{24} \mapsto [8b]_{24} \quad \text{bzw.} \quad [b]_{24} \mapsto [18b]_{24}.$

Aufgabe 4: Endliche Körper (1+1+1+1 Punkte)

a.) Nach der Vorlesung ist der Restklassenring \mathbb{Z}_p für eine Primzahl p ein Körper. Damit sind Elemente aus $\mathbb{Z}_p \setminus \{[0]_p\}$ in diesem Fall immer invertierbar. Geben Sie für die folgenden Körper zu jedem Element ungleich Null sein Inverses an:

 \mathbb{Z}_7 und \mathbb{Z}_{11} .

b.) Sei $K:=\mathbb{Z}_p$ für eine Primzahl p. Bestimmen Sie alle Lösungen der folgenden Gleichung in K:

$$\alpha + \alpha = -1_K .$$

- c.) Bestimmen Sie für $K:=\mathbb{Z}_{13}$ ein $x\in K$ mit $x^2=-1_K$.
- d.) Sei p eine Primzahl ungleich 2 und $K := \mathbb{Z}_p$. Zeigen Sie daß es in K^* genau $\frac{p-1}{2}$ Elemente y gibt, die eine Quadratwurzel in K^* besitzen, zu denen es also ein $x \in K^*$ mit $x^2 = y$ gibt.