Übungsaufgaben zur Linearen Algebra IIb (Fortsetzung von LA IIa/DMA)

Aufgabe 1: (4 Punkte)

Die vier Standard-Maximum-Programme für j = 1, 2, 3, 4,

$$x \ge 0$$
, $A \cdot x \le b$, $(c^{(j)})^{tr} \cdot x$ maximal,

mit

$$x = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}, \ A = \begin{pmatrix} 1 & 4 \\ 1 & 1 \\ 3 & 1 \end{pmatrix}, \ b = \begin{pmatrix} 24 \\ 9 \\ 21 \end{pmatrix}, \ (c^{(1)}, c^{(2)}, c^{(3)}, c^{(4)}) = (\begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 2 \end{pmatrix}, \begin{pmatrix} -1 \\ 1 \end{pmatrix}),$$

haben die gleiche Menge $K:=\{x\in M(2\times 1,\mathbb{R})\,|\,x\geq 0, A\cdot x\leq b\}$ zulässiger Lösungen. K ist nicht leer. Alle vier Programme haben auch nichtleere Mengen $K^{(j),opt}$ optimaler Lösungen.

Machen Sie eine präzise Skizze der Menge K, und machen Sie darin die Koordinaten aller Ecken von K kenntlich (ähnlich wie in der Skizze im Beispiel 11.1). Bestimmen Sie mit Hilfe der Skizze die vier Mengen $K^{(j),opt}$ (j=1,2,3,4), und geben Sie diese vier Mengen und ihre Werte $(c^{(j)})^{tr} \cdot x$ an.

Aufgabe 2: (2 Punkte)

Geben Sie das kanonische Maximum-Programm

$$\widetilde{x} \geq 0$$
, $\widetilde{A} \cdot \widetilde{x} = \widetilde{b}$, $\widetilde{c}^{tr} \cdot \widetilde{x}$ maximal

an, das man durch das Verfahren in Lemma 11.4 (b) aus dem Standard-Maximum-Programm zu j=3 in Aufgabe 1 gewinnt.

Aufgabe 3: (4 Punkte)

Die sechs Standard-Maximum-Programme für j = 1, 2, 3, 4, 5, 6,

$$x \ge 0$$
, $A \cdot x \le b$, $(c^{(j)})^{tr} \cdot x$ maximal,

mit

$$\begin{split} x &= \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}, \ A = \begin{pmatrix} -1 & 4 \\ 0 & -1 \end{pmatrix}, \ b = \begin{pmatrix} 8 \\ -1 \end{pmatrix}, \\ (c^{(1)}, c^{(2)}, c^{(3)}, c^{(4)}, c^{(5)}, c^{(6)}) &= (\begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \begin{pmatrix} -1 \\ 1 \end{pmatrix}, \begin{pmatrix} -1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ -1 \end{pmatrix}), \end{split}$$

haben die gleiche Menge $K:=\{x\in M(2\times 1,R)\,|\,x\geq 0, A\cdot x\leq b\}$ zulässiger Lösungen. K ist nicht leer. Die Mengen optimaler Lösungen werden $K^{(j),opt}$ genannt. Manche von ihnen sind leer, manche nicht.

Bitte wenden!

Machen Sie eine präzise Skizze der Menge K, und machen Sie darin die Koordinaten aller Ecken von K kenntlich

Bestimmen Sie mit Hilfe der Skizze die sechs Mengen $K^{(j),opt}$ (j=1,2,3,4,5,6), und geben Sie diese sechs Mengen an. Für die nichtleeren Mengen $K^{(j),opt}$ geben Sie ihre Werte $(c^{(j)})^{tr} \cdot x$ an.

Aufgabe 4: (1+1+1+1+2 Punkte)

Diese Aufgabe setzt die Kenntnis der Begriffe aus Definition 11.6 voraus (konvexe Menge, Ecke, Hyperebene, Halbraum).

Für eine stetige Funktion $f: \mathbb{R} \to \mathbb{R}$ sei $F(f) := \{(x,y) \in \mathbb{R}^2 \mid y \geq f(x)\}$. Die Menge der k-mal stetig differenzierbaren Funktionen auf \mathbb{R} wird mit $C^k(\mathbb{R},\mathbb{R})$ bezeichnet. Bemerkung: Es ist nicht schwer, für $f \in C^2(\mathbb{R},\mathbb{R})$ mit Mitteln der Analysis zu zeigen:

$$F(f)$$
 ist konvex $\iff f''(x) \ge 0$ für alle $x \in \mathbb{R}$.

- (a) Sei $f \in C^2(\mathbb{R}, \mathbb{R})$, und sei F(f) konvex. Zeigen Sie $E(F(f)) \subset \operatorname{Graph}(f) (:= \{(x, f(x) \mid x \in \mathbb{R}\}).$
- (b) Sei $f \in C^2(\mathbb{R}, \mathbb{R})$, und sei F(f) konvex. Für ein $x_1 \in \mathbb{R}$ ist $(x_1, f(x_1))$ keine Ecke von F(f) genau dann, wenn f''(x) = 0 für alle x nahe x_1 ist.
- (c) Geben Sie ein $f \in C^0(\mathbb{R}, \mathbb{R})$ an, so daß die Menge der Ecken E(F(f)) von F(f) abzählbar unendlich ist.
- (d) Geben Sie ein $f \in C^0(\mathbb{R}, \mathbb{R})$ an, so daß F(f) konvex ist und $\inf(y \mid (x, y) \in F(f))$ existiert, aber $\min(y \mid (x, y) \in F(f))$ nicht existiert.
- (e) Seien $H_1, ..., H_{n-1} \subset \mathbb{R}^n$ $(n \geq 2)$ Halbräume, und sei $K := H_1 \cap ... \cap H_{n-1}$. Nach Bemerkung 11.7 (v) ist K konvex. Zeigen Sie $E(K) = \emptyset$ (das wird in 11.7 (ix) behauptet, aber nicht bewiesen).