Übungsaufgaben zur Linearen Algebra IIa/Diskreten Mathematik A

Lösung Aufgabe 4

Aufgabe 4: (1+3 Punkte)

Es sei folgende symmetrische reelle Matrix gegeben:

$$A := \begin{pmatrix} a & b \\ b & c \end{pmatrix} \in M(2 \times 2, \mathbb{R}).$$

- i.) Beweisen Sie: A hat zwei reelle Eigenwerte, d.h. es gibt Elemente $\lambda_1, \lambda_2 \in \mathbb{R}$ mit $P_A(t) = (t \lambda_1)(t \lambda_2)$.
- ii.) Beweisen Sie, daß folgende Aussage für die beiden Eigenwerte gilt:

$$\lambda_1, \lambda_2 > 0 \iff a > 0, \det(A) > 0.$$

Bemerkung: In Teil i.) der Aufgabe sollen Sie für den Spezialfall n=2 einen elementaren Beweis von Satz 10.22.(i) führen. Teil ii) hat folgende Bewandnis: Nach Satz 10.23 gilt für die Matrix A die Äquivalenz

A positiv definit
$$\iff$$
 $\lambda_1, \lambda_2 > 0$,

und die obigen Bedingungen a > 0 und $\det(A) > 0$ bedeuten im Kontext von Satz 10.24, daß alle Hauptminoren von A positiv sind. Somit liefert Teil ii.) der Aufgabe einen Beweis für Satz 10.24 für den Spezialfall n = 2.

Lösung zur Aufgabe 4:

i.) Für das charakteristische Polynom $P_A(t)$ von A gilt:

$$P_A(t) = (-1)^2 \det \begin{pmatrix} a - t & b \\ b & c - t \end{pmatrix} = (a - t)(c - t) - b^2 = t^2 - (a + c)t + ac - b^2.$$

Eine reelle quadratische Gleichung $t^2 + pt + q$ hat genau dann zwei (nicht notwendig verschiedene) reelle Lösungen, wenn in der pq-Formel die Diskriminante D größer gleich Null ist:

(pq-Formel:)
$$t_{1/2} = -\frac{p}{2} \pm \sqrt{D}$$
 mit $D := \frac{p^2}{4} - q$.

Für $P_A(t)$ folgt dann mit p = -(a+c) und $q = ac - b^2$:

$$D = \frac{(a+c)^2}{4} - (ac - b^2) = \frac{(a+c)^2 - 4(ac - b^2)}{4} = \frac{(a-c)^2 + (2b)^2}{4} \ge 0,$$

da im Zähler die Summe zweier Quadrate steht und diese immer größer gleich Null ist. Also gibt es $\lambda_1, \lambda_2 \in \mathbb{R}$ mit $P_A(t) = (t - \lambda_1)(t - \lambda_2)$.

ii.) Nach Teil i.) gilt für das charakteristische Polynom $P_A(t)$:

$$P_A(t) = t^2 - (a+c)t + ac - b^2 = t^2 - (a+c)t + \det(A).$$

Für ein reelles quadratisches Polynom $t^2 + pt + q$ mit den reellen Nullstellen t_1, t_2 gilt:

$$p = -(t_1 + t_2)$$
 und $q = t_1 t_2$.

Damit folgt für das charakteristische Polynom $P_A(t)$ mit seinen Nullstellen λ_1 und λ_2 :

$$P_A(t) = t^2 - (\underbrace{\lambda_1 + \lambda_2}_{=a+c})t + \underbrace{\lambda_1 \lambda_2}_{=\det(A)}.$$

- "⇒": Aus $\lambda_1,\lambda_2>0$ und $\det(A)=\lambda_1\lambda_2$ folgt sofort $\det(A)>0$. Es ist somit nur noch a>0 zu zeigen. Wegen $\det(A)=ac-b^2>0$ ist $ac>b^2\geq0$, und daraus folgt, daß
 - Wegen $\det(A) = ac b^2 > 0$ ist $ac > b^2 \ge 0$, und daraus folgt, daß entweder a, c > 0 oder a, c < 0 gelten muß. Da aber $a + c = \lambda_1 + \lambda_2 > 0$ gilt, müssen a und c beide positiv sein, und somit a > 0.
- "\(\epsilon\), take the data points and the state points are state as a second and the state of the state of the state and the state of the state