Übungsaufgaben zur Linearen Algebra I

1. $(1+1+1+1 \ Punkte)$

- (a) Geben Sie die Linksnebenklassen von V_4 in S_4 als Mengen an (V_4 die Kleinsche Vierergruppe von Aufgabe 2.d auf Blatt 4), d.h. die Elemente der Menge S_4/V_4 .
- (b) V_4 ist ein Normalteiler von S_4 und S_4/V_4 somit nach Satz 1.36 eine Gruppe. Geben Sie die Verknüpfungstafel der Gruppe S_4/V_4 an (Sie können für die Angabe der Nebenklassen $\sigma_1 V_4, \ldots, \sigma_6 V_4$ selbst geeignete Repräsentanten $\sigma_i \in S_4$ wählen).
- (c) Jede Gruppe mit 6 Elementen ist entweder isomorph zu S_3 oder $\mathbb{Z}/6\mathbb{Z}$. Bestimmen Sie, zu welcher der beiden Gruppen S_4/V_4 isomorph ist. (Es reicht wieder zu begründen, warum S_4/V_4 zu einer der beiden angegebenen Gruppen nicht isomorph sein kann.)
- (d) Geben Sie alle Linksnebenklassen von V_4 in A_4 an und einen Gruppenisomorphismus von A_4/V_4 zu $\mathbb{Z}/3\mathbb{Z}$.

2. $(1+1+1+1 \ Punkte)$

- (a) Geben Sie alle injektiven Gruppenhomomorphismen von $\mathbb{Z}/3\mathbb{Z}$ nach $\mathbb{Z}/12\mathbb{Z}$ an.
- (b) Geben Sie alle Gruppenhomomorphismen von $\mathbb{Z}/7\mathbb{Z}$ nach $\mathbb{Z}/4\mathbb{Z}$ an.
- (c) Geben Sie alle surjektiven Gruppenhomomorphismen von S_3 nach $\mathbb{Z}/2\mathbb{Z}$ an.
- (d) Geben Sie alle surjektiven Gruppenhomomorphismen von A_4 nach $\mathbb{Z}/2\mathbb{Z}$ an.

Begründen Sie in allen Fällen, warum es nur die von Ihnen angegebenen Gruppenhomomorphismen gibt.

3. $(1+1+2 \ Punkte)$

- (a) Zeigen Sie, daß D_4 in S_4 kein Normalteiler ist.
- (b) Beweisen Sie, daß die zweielementigen Untergruppen von S_3 alle konjugiert sind (Beispiel 1.35.iii).
- (c) Sei G eine endliche Gruppe und $U \subseteq G$ eine Untergruppe. Beweisen Sie, daß gilt:

$$|U| = \frac{|G|}{2} \implies U$$
 ist ein Normalteiler in G .

- 4. $(1+1+2 \ Punkte)$ Es sei $\mathbb{Q}[\sqrt{2}] := \{a+b\sqrt{2} \mid a,b \in \mathbb{Q}\} \subseteq \mathbb{R}$. Auf dieser Teilmenge von \mathbb{R} können die bekannten Verknüpfungen + (Addition) und · (Multiplikation) betrachtet werden, und $\mathbb{Q}[\sqrt{2}]$ ist bzgl, dieser beiden Verknüpfungen ein Körper. Einige Aussagen dazu sollen Sie nun in Teil (a) und (b) beweisen.
 - (a) Beweisen Sie, daß die Menge $\mathbb{Q}[\sqrt{2}]$ bzgl. der Verknüpfungen abgeschlossen ist
 - (b) Beweisen Sie, daß jedes Element aus $\mathbb{Q}[\sqrt{2}] \setminus \{0\}$ ein multiplikatives Inverses hat, d.h. geben Sie zu $a + b\sqrt{2} \neq 0$ ein solches an.
 - (c) Schreiben Sie die folgenden vier Elemente aus $\mathbb{Q}[\sqrt{2}]$ in der Form $a + b\sqrt{2}$ mit $a, b \in \mathbb{Q}$:

$$(3+5\sqrt{2})(7-4\sqrt{2}), \quad (\sqrt{2}-1)^4, \quad \frac{1+\sqrt{2}}{1-\sqrt{2}} + \frac{1-\sqrt{2}}{1+\sqrt{2}}, \quad \frac{\sqrt{2}^{101}}{2+\sqrt{2}}.$$