17. Juli 2004

Scheinklausur Höhere Mathematik I

Schreiben Sie bitte auf jedes Blatt Ihren Namen! • •

Fragen: je zwei Punkte

Die Antworten auf die nachfolgenden Fragen sollten nicht länger als etwa zwei Zeilen sein und lediglich eine kurze Begründung enthalten. Antworten ohne Begründung werden nicht gewertet.

- 1) Richtig oder falsch: Sind die Elemente f_1, \ldots, f_r des Vektorraums $\mathcal{C}^1(\mathbb{R}, \mathbb{R})$ aller stetig differenzierbarer Funktionen linear abhängig, so sind auch ihre Ableitungen f'_1, \ldots, f'_r als Elemente des Vektorraums $\mathcal{C}^0(\mathbb{R}, \mathbb{R})$ aller stetiger Funktionen linear abhängig.
- 2) Richtig oder falsch: Sind die Elemente f_1, \ldots, f_r des Vektorraums $\mathcal{C}^1(\mathbb{R}, \mathbb{R})$ aller stetig differenzierbarer Funktionen linear unabhängig, so sind auch ihre Ableitungen f'_1, \ldots, f'_r als Elemente des Vektorraums $\mathcal{C}^0(\mathbb{R}, \mathbb{R})$ aller stetiger Funktionen linear unabhängig.
- 3) Richtig oder falsch: $\varphi, \psi: V \to W$ seien zwei lineare Abbildung zwischen den \mathbb{R} -Vektorräumen V und W. Dann ist $U = \{ \vec{v} \in V \mid \varphi(\vec{v}) = \psi(\vec{v}) \}$ ein Untervektorraum von V.
- 4) Der Untervektorraum $U \leq \mathbb{F}_2^3$ werde erzeugt von den Vektoren $\vec{v} = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$ und $\vec{w} = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$. Geben Sie alle Elemente von U explizit an!
- 5) Finden Sie eine ganzzahlige Lösung der Gleichung 17x + 7y = 2004!
- 6) Die Niveaulinien $N_a(f)$ der Funktion $f: \mathbb{R}^2 \to \mathbb{R}$ seien die Parabeln $y = 2x^2 + a$. Was ist f(x,y)?
- 7) Die Funktion $f: \mathbb{R}^3 \to \mathbb{R}$ habe in jedem Punkt den Gradienten $\nabla f(x, y, z) = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$, und im Nullpunkt sei f(0,0,0) = 1. Was ist f(x,y,z)?

Aufgabe 1: (11 Punkte)

V sei der Vektorraum aller reeller Polynome in x vom Grad höchstens vier, und M sei die Teilmenge aller Polynome aus V, die für x = 1 verschwinden.

- a) Ist M ein Untervektorraum von V?
- b) Zeigen Sie: Die Abbildung $\varphi: V \to \mathbb{R}$; $f \mapsto f(1)$ ist linear!
- c) Welche Dimensionen haben Kern und Bild von φ ?
- d) Zeigen Sie: $\mathcal{B} = (x^4 x^3, x^3 x^2, x^2 x, x 1)$ ist eine Basis von [M]!
- e) Ergänzen Sie B zu einer Basis C von V!
- f) Bestimmen Sie die Abbildungsmatrix von $\psi: V \to V$; $f \mapsto f'$ sowohl bezüglich der Basis $\mathcal{D} = (x^4, x^3, x^2, x, 1)$ als auch bezüglich \mathcal{C} !

Aufgabe 2: (8 Punkte)

Bestimmen Sie in Abhängigkeit von $a \in \mathbb{R}$ die Lösungsmenge \mathcal{L}_a des linearen Gleichungssystems

$$w-2x+3y-5z=10$$
 (1)
 $2w-3x+5y-10z=15$ (2)
 $3w-4x+2y+5z=25$ (3)
 $4w-3x+2y+5(a^2-a)z=5(a+4)$ (4)

Hinweis nur zur Kontrolle auf Rechenfehler: Für viele Werte von a ist $z = \frac{1}{z-1}$.

Aufgabe 3: (5 *Punkte*)
Bestimmen Sie die QR-Zerlegung der Matrix
$$A = \begin{pmatrix} 2 & 2 & 0 & 9 \\ 1 & -2 & 3 & 6 \\ 2 & -1 & 6 & 3 \end{pmatrix}$$
!

Aufgabe 4: (6 Punkte)

Zwischen zwei Größen x und t wird ein Zusammenhang der Form

$$x(t) = a\cos t + b\cos 2t + c\cos 3t$$

erwartet. Zur Bestimmung der Parameter a, b, c werden hundert Messungen durchgeführt, die zu Wertepaaren (t_n, x_n) führen. Stellen Sie ein lineares Gleichungssystem auf, dem die nach der Methode der kleinsten Quadrate bestmöglichen Schätzwerte für a, b, c genügen!

Aufgabe 5: (6 Punkte)

a) Eine Matrix heißt symmetrisch, falls ${}^{t}A = A$ ist, HERMITESCH, wenn ${}^{t}A = \overline{A}$ ist, orthogonal, wenn ${}^{t}AA = E$ ist und $unit\ddot{a}r$, wenn ${}^{t}A\overline{A} = E$ ist. Welche dieser vier Eigenschaften

hat die Matrix
$$A = \frac{1}{5} \begin{pmatrix} 3i & 0 & 4 \\ 0 & 5 & 0 \\ 4 & 0 & 3i \end{pmatrix}$$
?

- c) Was ist det(A)?

Aufgabe 6: (6 Punkte)

- Aufgabe 6: (6 Punkte)

 a) Bestimmen Sie die Eigenwerte und Eigenvektoren der Matrix $A = \begin{pmatrix} -1 & 2 & -1 \\ 1 & 0 & -1 \\ 4 & -4 & 0 \end{pmatrix}$!

 b) Zeigen Sie daß \mathbb{R}^3 eine Basis aus Eigenvektoren von A hat! b) Zeigen Sie, daß \mathbb{R}^3 eine Basis aus Eigenvektoren von A hat!
- c) Wie sieht die Matrix A bezüglich dieser Basis aus?

Aufgabe 7: (4 Punkte) Berechnen Sie für die Funktion f:
$$\begin{cases} \mathbb{R}^2 \to \mathbb{R} \\ (x,y) \mapsto e^{xy} + x^2 \cos y + y^2 \sin x + x^2 y^2 \end{cases}$$
 Gradient und Hesse-Matrix!

Steht Ihr Name auf jedem Blatt?