25. Februar 2014

3. Übungsblatt Zahlentheorie

Aufgabe 1: (4 Punkte)

- a) Beweisen Sie die Wilsonsche Kongruenz: Für jede Primzahl p ist $(p-1)! \equiv -1 \mod p$. Hinweis: Betrachten Sie die Faktoren in (p-1)! als Elemente des Körpers \mathbb{F}_p , und beachten Sie, daß mit jedem Element i auch dessen (nicht notwendigerweise von i verschiedenes) Inverses vorkommt.
- b) Zeigen Sie auch die Umkehrung: Gilt für $p \in \mathbb{N} \setminus \{1\}$ die Kongruenz $(p-1)! \equiv -1 \mod p$, so ist p eine Primzahl.

Aufgabe 2: (5 Punkte)

a) Berechnen Sie im Körper \mathbb{F}_{257} die folgenden Elemente:

$$x_1 = 3 - 100$$
, $x_2 = 100 \cdot 100$, $x_3 = 11/19$, $x_4 = 2^{4100}$

b) Finden Sie eine primitive Wurzel von \mathbb{F}_{17} !

Aufgabe 3: (5 Punkte)

- a) p sei eine Primzahl, und zu $a \in \mathbb{F}_p^{\times}$ gebe es ein $x \in \mathbb{F}_p$ mit $x^2 = a$. Zeigen Sie: Dann ist $x^{p+1} = a$.
- b) Nun sei $p \equiv 3 \mod 4$. Zeigen Sie: Wenn es in \mathbb{F}_p eine Lösung x der Gleichung $x^2 = a$ gibt, so ist auch $y = a^{(p+1)/4}$ eine Lösung.
- c) Bestimmen Sie im Körper \mathbb{F}_{127} die Lösungsmenge der Gleichung $x^2=3$!
- d) Ditto für $x^2 = 11$!
- e) Ditto für $x^2 + 2x = 10!$

Aufgabe 4: (4 Punkte)

- a) Zeigen Sie: Für jede Primzahl p ist $(\mathbb{Z}/2p)^{\times}$ zyklisch!
- b) Sind p und q zwei verschiedene ungerade Primzahlen, so ist $(\mathbb{Z}/pq)^{\times}$ nicht zyklisch.
- c) Für welche $m \leq 15$ ist die prime Restklassengruppe $(\mathbb{Z}/m)^{\times}$ zyklisch?

Aufgabe 5: (2 Punkte)

- a) Wie viele Elemente hat die Gruppe $(\mathbb{Z}/2014)^{\times}$? Hinweis: Die Primfaktorzerlegung von 2014 ist $2^2 \cdot 19 \cdot 53$.
- b) Ist diese Gruppe zyklisch?