29. November 2016

10. Übungsblatt Topologie und Gleichgewichte

Aufgabe 1: (6 Punkte)

Untersuchen Sie, ob die jeweils angegebenen topologischen Räume homöomorph sind, und beweisen Sie Ihre Aussage:

- a) Der Rand eines n-Simplex und der eines m-Simplex für $n \neq m$
- b) \mathbb{R}^n und $\{(x_1,\ldots,x_n) \in \mathbb{R}^n \mid \forall i : 0 < x_i < 1\}$
- c) Die Oberfläche eines Würfels mit Ausnahme einer Ecke und \mathbb{R}^2
- d) Ein Torus und ein Möbius-Band
- e) \mathbb{R}^2 ohne Nullpunkt und die Oberfläche einer Kugel
- f) Das Produkt zweier offener n-Simplizes und das offene 2n-Simplex

Aufgabe 2: (6 Punkte)

X und Y seien topologische Räume, und $f: X \to Y$, $g: Y \to X$ seien stetige Abbbildungen.

- a) Die Teilmengen A, B von X seien beide HAUSDORFFSCh bzw. kompakt bzw. zusammenhängend bzw. zusammenziehbar. Hat dann auch $A \cup B$ die entsprechende Eigenschaft?
- b) Wie steht es mit $A \cap B$?
- c) Hat f(A) die entsprechende Eigenschaft?
- d) Wie steht es mit $g^{-1}(A)$?

Aufgabe 3: (2 Punkte)

Das dreidimensionale Polyeder P sei homotop zu einer Kreislinie. Bestimmen Sie die alternierende Summe seiner Ecken, Kanten und Flächen!

Aufgabe 4: (5 Punkte)

Beweisen oder widerlegen Sie:

- a) Jede stetige Abbildung $f: T \to T$ eines Torus auf sich selbst hat einen Fixpunkt.
- b) Der Torus ist homöomorph zum Produkt zweier Kreislinien.
- c) Der Torus ist homotop zum Produkt zweier Kreislinien.
- d) Der Torus ist homotop zu einer Kugeloberfläche.
- e) Jede abgeschlossene echte Teilmenge eines Torus ist zusammenziehbar.

Aufgabe 5: (2 Punkte)

Zeigen Sie: Ein topologischer Raum ist genau dann Hausdorffsch, wenn jede konvergente Folge einen eindeutig bestimmten Grenzwert hat.

Aufgabe 6: (3 Punkte)

Der topologische Raum $X_n \subset \mathbb{R}^2$ mit $n \in \{7, 8, 9, 0\}$ sehe aus wie die Ziffer n. Finden Sie eine Triangulierung von X_n und berechnen Sie seine Homologie!

Abgabe bis zum Donnerstag, dem 1. Dezember 2016, um 15.25 Uhr