24. März 2015

6. Übungsblatt Reell-algebraische Geometrie

Aufgabe 1: (5 Punkte)

- a) X, Y seien topologische Räume, $f: X \to Y$ sei eine stetige Abbildung und $Z \subseteq Y$ sei zusammenhängend. Muß dann auch $f^{-1}(Z)$ zusammenhängend sein?
- b) Skizzieren Sie die folgenden Mengen und entscheiden Sie (mit Beweis), ob sie zusammenhängend sind oder nicht:

$$\begin{split} X_1 &= \left\{ x \in \mathbb{R} \;\middle|\; 1 < |x| \leq 2 \right\}, \\ X_2 &= \left\{ z \in \mathbb{C} \;\middle|\; 1 < |z| \leq 2 \right\}, \\ X_3 &= \left\{ z \in \mathbb{C} \;\middle|\; \mathfrak{Re} \, z \in \mathbb{Q} \;\; \text{und} \;\; \mathfrak{Im} \, z \in \mathbb{Q} \right\} \end{split}$$

Aufgabe 2: (6 Punkte)

- a) Zeigen Sie, daß es für jedes n eine injektive Abbildung $\mathbb{C} \to \mathbb{C}^{n+1}$ gibt, deren Bild die Menge $B_1^n \cap \{a \in \mathbb{C}^{n+1} \mid a_n = 1\}$ ist!
- b) Geben Sie diese Abbildung explizit an!
- c) Beschreiben Sie M_nⁿ durch Polynomgleichungen und -ungleichungen!

Aufgabe 3: (9 Punkte)

- a) Was ist das Komplement von $B_2^2(\mathbb{R}) \cup B_1^2(\mathbb{R})$ in \mathbb{R}^3 ?
- b) Geben Sie die Teilmengen $M_2^2(\mathbb{R})$ und $M_1^2(\mathbb{R})$ von \mathbb{R}^3 explizit an!
- c) Wie sehen die Funktionen f_1, f_2 , die die Nullstellen liefern, in der Umgebung eines Punktes $a \in M_2^2(\mathbb{R})$ aus?
- d) Wie sieht die Funktion f, die die Nullstelle liefert, in der Umgebung eines Punktes a aus $M_1^2(\mathbb{R})$ aus?
- e) Bestimmen Sie jeweils die Teilmengen, auf denen es reelle Lösungen gibt, sowie die Funktionen, die diese liefern!

FROHE OSTERN!