7. März 2019

4. Übungsblatt Funktionentheorie I

Aufgabe 1: (8 Punkte)

Entscheiden Sie, welche der folgenden Aussagen richtig ist, und geben Sie dann entweder einen Beweis oder ein Gegenbeispiel:

- a) Ist $f: G \to H$ eine bjektive holomorphe Abbildung auf dem Gebiet G, so ist die Umkehrfunktion $f^{-1}: H \to G$ stetig.
- b) Stimmen zwei holomorphe Funktionen $f, g: \mathbb{C} \to \mathbb{C}$ auf einer abgeschlossenen Kreisscheibe überein, so ist f = g.
- c) Stimmen zwei holomorphe Funktionen $f,g:\mathbb{C}\to\mathbb{C}$ auf dem Intervall $(0,1)\subset\mathbb{R}$ überein, so ist f=g.
- d) Stimmen zwei holomorphe Funktionen $f, g: \mathbb{C} \to \mathbb{C}$ auf \mathbb{Q} überein, so ist f = g.
- e) Stimmen zwei holomorphe Funktionen f, $q: \mathbb{C} \to \mathbb{C}$ auf \mathbb{Z} überein, so ist f = q.

Aufgabe 2: (7 Punkte)

Zur Funktion $f: \mathbb{C} \to \mathbb{C}$ gebe es zwei komplexe Zahlen $\omega_1, \omega_2 \in \mathbb{C} \setminus \{0\}$ derart, daß

$$f(z + \omega_1) = f(z + \omega_2) = f(z)$$

für alle $z \in \mathbb{C}$.

- a) Zeigen Sie: Falls $\omega_1/\omega_2 \notin \mathbb{R}$, gibt es eine kompakte Teilmenge $Z \subset \mathbb{C}$, so daß f durch seine Werte auf Z eindeutig bestimmt ist.
- b) Ist f holomorph und $\omega_1/\omega_2 \notin \mathbb{R}$, so ist f konstant.
- c) Ist f holomorph, $\omega_1=1$ und $\omega_2=\sqrt{2}$, so ist f konstant. (Hinweis: Zeigen Sie, daß die Potenzen von $\sqrt{2}-1$ eine Nullfolge bilden, und folgern Sie daraus, daß es zu jedem $\varepsilon>0$ ganze Zahlen a, b gibt mit $0<\left|a+b\sqrt{2}\right|<\varepsilon$.)

Aufgabe 3: (5 Punkte)

- a) f: D \rightarrow D sei eine holomorphe Abbildung der offenen Kreisscheibe D vom Radius r um z_0 auf sich selbst mit $f(z_0)=z_0$. Dann gilt für alle $z\in D$, daß $|f(z)-z_0|\leq |z-z_0|$ ist, und falls für ein $z\neq z_0$ hier ein Gleichheitszeichen auftritt, ist f eine Drehung um z_0 , hat also die Form $z\mapsto z_0+e^{i\varphi}(z-z_0)$. (Hinweis: Die Reduktion auf den Fall $z_0=0$ ist ziemlich klar; danach können Sie die Abbildung $z\mapsto f(rz)/r$ betrachten und das Schwarzsche Lemma darauf anwenden.)
- b) G sei ein Gebiet und $f: G \to \mathbb{C}$ eine holomorphe Abbildung, die eine abgeschlossene Kreisscheibe $D \subset G$ surjektiv auf sich selbst abbilde und den Mittelpunkt dieser Kreisscheibe festlasse. Dann ist f auf ganz G eine Drehung.