31. März 2017

6. Übungsblatt Funktionentheorie I

Aufgabe 1: (5 Punkte)

D sei die Kreisscheibe mit Radius eins um den Punkt 3. Berechnen Sie die folgenden Integrale:

a)
$$\int_{\partial D} \frac{dz}{z - \pi}$$
 b) $\int_{\partial D} \frac{dz}{(z - \pi)^2}$ c) $\int_{\partial D} \frac{dz}{z^2 - \pi^2}$ d) $\int_{\partial D} \frac{dz}{(z - \pi)^{2017}}$ e) $\int_{\partial D} \frac{dz}{z - \pi^{2017}}$

Lösung: a) $1/(z-\pi)$ ist holomorph auf $\mathbb{C} \setminus \{\pi\}$, und π liegt im Innern von D. Somit ist dieses Integral gleich $2\pi i$.

b) $1/(z-\pi)^2$ hat die überall auf dem Kreisrand holomorphe Stammfunktion $-1/(z-\pi)$; somit verschwindet das Integral.

Alternativ: Die Laurent-Reihe um π besteht nur aus dem einen Term $(z-\pi)^{-2}$; das Residuum an der einzigen Polstelle π ist also Null, so daß das Integral nach dem Residuensatz verschwindet.

c)
$$\frac{1}{z^2 - \pi^2} = \frac{1}{(z + \pi)(z - \pi)} = \frac{1}{2\pi} \left(\frac{1}{z - \pi} - \frac{1}{z + \pi} \right)$$
;

$$\int_{\partial D} \frac{\mathrm{d}z}{z^2 - \pi^2} = \frac{1}{2\pi} \left(\int_{\partial D} \frac{\mathrm{d}z}{z - \pi} - \int_{\partial D} \frac{\mathrm{d}z}{z + \pi} \right) = \frac{2\pi i - 0}{2\pi} = i,$$

denn der zweite Inegrand ist holomorph in ganz \overline{D} .

Alternativ: Die Funktione hat Pole bei $\pm \pi$, wobei nur der bei π in D liegt. Das Residuum dort ist, da es sich um einen Pol erster Ordnung handelt,

$$\operatorname{Res}_{\pi} \frac{1}{z^2 - \pi^2} = \lim_{z \to \pi} \frac{z - \pi}{z^2 - \pi^2} = \lim_{z \to \pi} \frac{1}{z + \pi} = \frac{1}{2\pi}.$$

Nach dem Residuensatz ist daher

$$\int_{\partial D} \frac{\mathrm{d}z}{z^2 - \pi^2} = 2\pi \mathbf{i} \cdot \operatorname{Res}_{\pi} \frac{1}{z^2 - \pi^2} = \mathbf{i}.$$

- d) Dieser Integrand hat einen Pol der Ordnung 2017 bei π ; die Laurent-Reihe um den Punkt π besteht nur aus dem Summanden $(z-\pi)^{-2017}$. Insbesondere gibt es keinen Term mit $(z-\pi)^{-1}$, d.h. das Residiuum im Punkt π verschwindet, und damit auch das Integral. (Man kann natürlich auch, wie bei b), über die Stammfunktion argumentieren.)
- e) Hier liegt der einzige Pol bei $z=\pi^{2017}$, also weit außerhalb von D. In der Umgebung von D ist der Integrand somit holomorph, so daß das Integral nach dem Cauchyschen Integralsatz verschwindet.

Aufgabe 2: (9 Punkte)

Berechnen Sie die folgenden Integrale:

a)
$$\int_{-\infty}^{\infty} \frac{dx}{(x^2+1)(x^2+9)}$$
 b) $\int_{-\infty}^{\infty} \frac{20x}{(x^2+4)(x^2-2x+2)} dx$ c) $\int_{-\infty}^{\infty} \frac{x^2}{x^4+256} dx$

Lösung: a) $(z^2 + 1)(z^2 + 9)$ hat die vier Nullstellen $\pm i$ und $\pm 3i$, von denen keine auf der reellen Achse liegt; außerdem ist der Grad vier des Nenners des Integranden um mindestens zwei größer als der Grad Null des Zählers. Somit ist das Integral gleich $2\pi i$ mal der Summe der Residuen bei i und bei 3i. Alle Pole haben die Ordnung eins; daher können wir die Residuen über die Grenzwertformel berechnen:

$$\operatorname{Res}_{\mathfrak{i}} \frac{1}{(z^2+1)(z^2+9)} = \lim_{z \to \mathfrak{i}} \frac{z-\mathfrak{i}}{(z^2+1)(z^2+9)} = \lim_{z \to \mathfrak{i}} \frac{1}{(z+\mathfrak{i})(z^2+9)} = \frac{1}{2\mathfrak{i} \cdot 8} = \frac{1}{16\mathfrak{i}}$$

und

$$\operatorname{Res}_{3\mathfrak{i}} \frac{1}{(z^2+1)(z^2+9)} = \lim_{z\to 3\mathfrak{i}} \frac{z-3\mathfrak{i}}{(z^2+1)(z^2+9)} = \lim_{z\to 3\mathfrak{i}} \frac{1}{(z^2+1)(z+3\mathfrak{i})} = \frac{1}{(-8)\cdot 6\mathfrak{i}} = \frac{-1}{48\mathfrak{i}}.$$

Somit ist

$$\int_{-\infty}^{\infty} \frac{\mathrm{d}x}{(x^2+1)(x^2+9)} = 2\pi i \left(\frac{1}{16i} - \frac{1}{48i}\right) = 2\pi \left(\frac{1}{16} - \frac{1}{48}\right) = \frac{\pi}{12}.$$

b) Auch hier ist der Nennergrad vier um mindestens zwei größer als der Zählergrad eins. Wegen

$$z^2 - 2z + 2 = (z - 1)^2 + 1$$

liegen die Nullstellen des Nenners bei $\pm 2i$ und $1 \pm i$; das Integral ist also gleich $2\pi i$ mal der Summe der Residuen bei 2i und bei 1+i. Wieder haben alle Pole die Ordnung eins.

$$\operatorname{Res}_{2i} \frac{20z}{(z^2+4)(z^2-2z+2)} = \lim_{z \to 2i} \frac{(z-2i) \cdot 20z}{(z^2+4)(z^2-2z+1)} = \lim_{z \to 2i} \frac{20z}{(z+2i)(z^2-2z+2)}$$
$$= \frac{40i}{4i \cdot (-4-4i+2)} = \frac{10}{-2-4i} = \frac{10(-2+4i)}{2^2+4^2} = -1+2i$$

und

$$\begin{split} \operatorname{Res}_{1+i} \frac{1}{(z^2+4)(z^2-2z+2)} &= \lim_{z \to 1+i} \frac{(z-1-i) \cdot 20z}{(z^2+4)(z^2-2z+1)} = \lim_{z \to 1+i} \frac{20z}{(z^2+4)(z-1+i)} \\ &= \frac{20(1+i)}{(2i+4) \cdot 2i} = \frac{20(1+i)}{-4+8i} = \frac{20(1+i)(-4-8i)}{4^2+8^2} = \frac{20(4-12i)}{80} = 1-3i \; . \end{split}$$

Somit ist

$$\int_{-\infty}^{\infty} \frac{dx}{(x^2+4)(x^2-2x+2)} = 2\pi i ((-1+2i)+(1-3i)) = 2\pi.$$

c) $z^4+256=(z^2+16\mathrm{i})(z^2-16\mathrm{i})$. Die Wurzel aus i ist $\pm(1+\mathrm{i})\frac{\sqrt{2}}{2}$, die von $-\mathrm{i}$ ist das i-fache davon, also $\pm(-1+\mathrm{i})\frac{\sqrt{2}}{2}$. Die Wurzeln aus $\pm16\mathrm{i}$ sind die Vierfachen davon, also die vier Zahlen

$$z_1 = 2(1+i)\sqrt{2}$$
, $z_2 = -z_1$, $z_3 = 2(-1+i)\sqrt{2}$ und $z_4 = -z_3$.

Dabei ist $z_1^2 = z_2^2 = 16i$ und $z_3^2 = z_4^2 = -16i$.

Wieder ist der Zählergrad zwei um mindestens zwei kleiner als der Nennergrad vier, und wieder sind alle Polstellen einfach und keine liegt auf der reellen Achse. Positiven Imaginärteil haben z_1 und z_3 ; auf die Residuen dort kommt es also an.

$$\operatorname{Res}_{z_1} \frac{z^2}{(z^4 + 256)} = \lim_{z \to z_1} \frac{(z - 2(1+i)\sqrt{2})z^2}{(z^4 + 256)} = \lim_{z \to z_1} \frac{z^2}{(z + 2(1+i)\sqrt{2})(z^2 + 16i)}$$
$$= \frac{16i}{4(1+i)\sqrt{2} \cdot 32i} = \frac{1}{8(1+i)\sqrt{2}} = \frac{(1-i)\sqrt{2}}{8 \cdot (1^2 + 1^2) \cdot 2} = \frac{\sqrt{2}}{32} - \frac{i\sqrt{2}}{32}$$

und

$$\operatorname{Res}_{z_3} \frac{z^2}{(z^4 + 256)} = \lim_{z \to z_3} \frac{\left(z - 2(-1 + i)\sqrt{2}\right)z^2}{(z^4 + 256)} = \lim_{z \to z_3} \frac{z^2}{(z^2 - 16i)\left(z + 2(-1 + i)\sqrt{2}\right)}$$
$$= \frac{-16i}{-32i \cdot 4(-1 + i)\sqrt{2}} = \frac{1}{8(-1 + i)\sqrt{2}} = \frac{(-1 - i)\sqrt{2}}{8 \cdot (1^2 + 1^2) \cdot 2} = -\frac{\sqrt{2}}{32} - \frac{i\sqrt{2}}{32}.$$

Somit ist

$$\int_{-\infty}^{\infty} \frac{x^2}{x^4 + 256} = \frac{2\pi i}{32} \sqrt{2} ((1 - i) + (-1 - i)) = \frac{4\pi}{32} \sqrt{2} = \frac{\pi\sqrt{2}}{8}.$$

Aufgabe 3: (3 Punkte)

f=P/Q sei eine rationale Funktion, deren Nenner keine reelle Nullstelle habe, und der Grad des Zählers sei mindestens um zwei kleiner als der des Nenners.

a) Zeigen Sie, daß f höchstens endlich viele Polstellen z_1, \ldots, z_r mit negativem Imaginärteil hat!

Lösung: Als rationale Funktion hat f nur endlich viele Polstellen, und von denen haben natürlich auch nur endlich viele einen negativen Imaginärteil.

b) Welcher Zusammenhang besteht zwischen $\int\limits_{-\infty}^{\infty} f(x)\,dx$ und der Summe der Residuen von f an den Stellen z_k ?

Lösung: R sei größer als die Beträge aller z_k ; dann liegen alle z_k im Halbkreis um Null mit Radius R unterhalb der reellen Achse. Nach dem Residuensatz ist das im Gegenuhrzeigersinn durchlaufene Integral über den Rand des Halbkreises gleich $2\pi i$ mal der Summe der Residuen in den Punkten z_k . Dieses Integral setzt sich zusammen aus $-\int_{-R}^R f(z) dz$ und dem Integral über den Halbkreisbogen. Da der Nennergrad den Zählergrad um mindestens zwei übersteigt, verschwindet letzteres für $R \to \infty$, also ist

$$\int_{-\infty}^{\infty} f(x) dx = -2\pi i \sum_{k=1}^{r} \operatorname{Res}_{z_k} f.$$

Aufgabe 4: (3 Punkte)

 $f: G \to \widehat{\mathbb{C}}$ sei eine meromorphe Funktion auf dem beschränkten Gebiet G, und A sei eine abgeschlossene Teilmenge von G. Zeigen Sie: Dann gibt es zwei holomorphe Funktionen g, h, so daß für alle $z \in A$ gilt f(z) = g(z)/h(z).

Lösung: Da das Gebiet G beschränkt ist und $A \subset G$ abgeschlossen, ist A kompakt. Daher kann f in A höchstens endlich viele Polstellen haben: Andernfalls müßten die einen Häufungspunkt in $A \subset G$ haben, was nach Definition einer meromorphen Funktion ausgeschlossen ist. Die Polstellen von f in A seien z_1, \ldots, z_r , und der Pol in z_k habe die Ordnung e_k . Dann sind

$$h(z) = (z - z_1)^{e_1} \cdots (z - z_r)^{e_r}$$
 und $g(z) = (z - z_1)^{e_1} \cdots (z - z_r)^{e_r} f(z)$

in allen $z \in A$ holomorph, und f(z) = g(z)/h(z).