24. Oktober 2003

2. Übungsblatt Computeralgebra

Aufgabe 1: (5 Punkte)

- a) Schreiben Sie ein Programm, das zu zwei natürlichen Zahlen a,b die Liste der beim Euklidischen Algorithmus auftretenden Divisionsreste ausgibt, wobei das letzte Listenelement gleich dem ggT sein soll!
- b) Finden Sie mittels der *online*-Hilfe von Maple dessen Kommando zur Darstellung der Fibonacci-Zahlen, und testen Sie Ihr Programm mit $a = F_{21}$ und $b = F_{20}$!
- c) a sei die kleinste elfstellige Primzahl, a = p + 2, und q sei die zweitkleinste elfstellige Quadratzahl. Testen Sie Ihr Programm auch mit diesen Zahlen a und b!

Aufgabe 2: (5 Punkte)

- a) Für zwei natürliche Zahlen $a \ge b$ braucht man Tausend Divisonen, um ggT(a,b) nach dem Euklidischen Algorithmus zu berechnen. Wie viele Dezimalstellen hat b mindestens?
- b) Gibt es auch Zahlen \tilde{a} und \tilde{b} mit jeweils einer Dezimalstelle mehr, so daß der Euklidische Algorithmus genau Tausend Divisionen benötigt?

Aufgabe 3: (5 Punkte)

- a) Berechnen Sie die Folge aller Paare (i, a_i) mit $1 \le i \le 52$, wobei $1 \le a_i \le 52$ so gewählt ist, daß $ia_i \equiv 1 \mod 53$ ist!
- b) Zeichnen Sie den Streckenzug mit Ecken (i, a_i) , d.h. die "Hyperbel" $y = 1/x \mod 53$!

Aufgabe 4: (5 Punkte)

a) Finden Sie alle ganzzahligen Lösungen des linearen Gleichungssystems

$$3x - 4y + 5z = 2$$
 und $5x + 4y + 2z = 3!$

b) Finden Sie alle ganzen Zahlen x mit

$$x \equiv 1 \mod 2001$$
, $x \equiv 10 \mod 2002$ und $x \equiv 100 \mod 2003$!