28. Februar 2020

2. Übungsblatt Computeralgebra

Aufgabe 1: (6 Punkte)

- a) Berechnen Sie die Resultante der beiden Polynome $f = X^3 + X^2 + 1$ und $g = X^2 + X + 1$ aus $\mathbb{Z}[X]$!
- b) Was ist der ggT von f und g in $\mathbb{Z}[X]$?
- c) Für welche Primzahlen p haben f mod p und g mod p in $\mathbb{F}_p[X]$ einen gemeinsamen Teiler mit einem größeren Grad als deg ggT(f, g), und wie sieht der aus?

Aufgabe 2: (4 Punkte)

- a) Berechnen Sie die Resultante der beiden Polynome $f = X^2 + pX + q$ und g = X a aus $\mathbb{R}[X]$, und interpretieren Sie das Ergebnis!
- b) Berechnen Sie die Resultante von f und f'!

Aufgabe 3: (5 Punkte)

- a) Welche Bedingung müssen die Parameter p uund q erfüllen, damit das Polynom $f = X^3 + px + q$ eine mehrfache Nullstelle hat?
- b) Was muß gelten, damit die Gleichung $X^3 + pX + q = 0$ sogar eine dreifache Nullstelle hat?

Aufgabe 4: (5 Punkte)

- a) Fassen Sie die Polynome $f = X^2Y + XY + 1$ und $g = X^2Y + X + 1$ einmal auf als Polynome in X über $\mathbb{R}[Y]$ und einmal als Polynome in Y über $\mathbb{R}[X]$, und berechnen Sie so die beiden Resultanten $\mathrm{Res}_X(f,g)$ und $\mathrm{Res}_Y(f,g)$!
- b) Bestimmen Sie (ohne Resultanten) alle $(x,y) \in \mathbb{R}^2$, für die f(x,y) = g(x,y) = 0 ist!