24. November 2015

11. Übungsblatt Algebra

Aufgabe 1: (6 Punkte)

Zeigen Sie:

- a) Sind $f, g \in k[X]$ separable Polynome über einem Körper k, so sind auch ggT(f,g) und kgV(f,g) separabel.
- b) Für ein Polynom f = $a_dX^d + a_{d-1}X^{d-1} + \cdots + a_2X^2 + a_1X + a_0 \in k[X]$ über einem beliebigen Körper k bezeichnen wir

$$f' = d\alpha_d X^{d-1} + (d-1)\alpha_{d-1} X^{d-2} + \dots + 2\alpha_2 X + \alpha_1$$

als die Ableitung von f. Zeigen Sie, daß für zwei Polynome f, $g \in k[X]$ gilt: $(f \pm g)' = f' \pm g'$ und (fg)' = fg' + f'g!

c) K/\mathbb{Q} sei ein Erweiterungskörper von \mathbb{Q} . Zeigen Sie, daß jedes irreduzible Polynom $f \in K[X]$ separabel ist!

Aufgabe 2: (8 Punkte)

- a) Bestimmen Sie für $L = \mathbb{Q}(\sqrt{2}, i)$ die Gruppe aller Automorphismen $L \to L!$
- b) Zeigen Sie, daß L/\mathbb{Q} eine Galoissche Erweiterung ist!
- c) Zeigen Sie, daß Aut(L/ \mathbb{Q}) isomorph ist zur Kleinschen Vierergruppe $V_4 = \mathbb{Z}/2 \oplus \mathbb{Z}/2!$
- d) Bestimmen Sie alle Zwischenkörper $\mathbb{Q} \leq K \leq L$ und die zugehörigen Untergruppen der Galois-Gruppe!

Aufgabe 3: (6 Punkte)

- a) Geben Sie für den Körper $K = \mathbb{Q}(\sqrt{-5})$ die Norm- und die Spurabbildung $K \to \mathbb{Q}$ explizit an! Ist eine der beiden Abbildungen surjektiv?
- b) $R \subset K$ sei der Ring aller Elemente der Form $a + b\sqrt{-5}$ mit $a, b \in \mathbb{Z}$. Zeigen Sie, daß ein Element $x \in K$ genau dann in R liegt, wenn sowohl seine Norm als auch seine Spur ganz sind!
- c) Ein Element $x \in R$ ist irreduzibel, wenn seine Norm prim ist, und es ist genau dann eine Einheit, wenn es Norm eins hat.
- d) Zeigen Sie, daß $6 = 2 \cdot 3 = (1 + \sqrt{-5})(1 \sqrt{-5})$ zwei verschiedene Zerlegungen der Sechs in Produkte irreduzibler Elemente von R sind, so daß R kein faktorieller Ring sein kann!